cord blood values | what’s the cost for cord blood banking

Umbilical cord blood contains haematopoietic (blood) stem cells. These cells are able to make the different types of cell in the blood – red blood cells, white blood cells and platelets. Haematopoietic stem cells, purified from bone marrow or blood, have long been used in stem cell treatments for leukaemia, blood and bone marrow disorders, cancer (when chemotherapy is used) and immune deficiencies.
After your baby is born the umbilical cord will be clamped and cut. Using ViaCord’s collection kit, your medical professional will insert a needle into the umbilical cord and let the remaining blood drain into our collection bag. 
Marketing materials by Viacord and Cord Blood Registry, the two largest companies, do not mention that cord blood stem cells cannot be used by the child for genetic diseases, although the fine print does state that cord blood may not be effective for all of the listed conditions.
Through these two means, we are always producing more cells. In fact, much of your body is in a state of constant renewal because many cells can live for only certain periods of time. The lifespan for a cell in the stomach lining is about two days. Red blood cells, about four months. Nerve and brain cells are supposed to live forever. This is why these cells rarely regenerate and take a long time if they do.
However, the American Academy of Pediatrics strongly encourages umbilical cord donations for general research purposes. Donors are encouraged to contact a cord blood bank by the 35th week of pregnancy. 
This and all other stem cell therapies since involve introducing new stem cells into the area to encourage the healing process. Often, the stem cell will create a particular type of cell simply because it is in proximity to other cells of that type. Unfortunately, researchers still had a ways to go before they could use stem cells from unrelated persons.
The stem cells used in PBSCT come from the bloodstream. A process called apheresis or leukapheresis is used to obtain PBSCs for transplantation. For 4 or 5 days before apheresis, the donor may be given a medication to increase the number of stem cells released into the bloodstream. In apheresis, blood is removed through a large vein in the arm or a central venous catheter (a flexible tube that is placed in a large vein in the neck, chest, or groin area). The blood goes through a machine that removes the stem cells. The blood is then returned to the donor and the collected cells are stored. Apheresis typically takes 4 to 6 hours. The stem cells are then frozen until they are given to the recipient.
Why should you consider donating the cord blood to a public bank? Simply because, besides bringing a new life into the world, you could be saving an individual whose best chance at life is a stem cell transplant with your baby’s donated cord blood. This can only happen if you donate and if your baby is a close enough match for a patient in need. If you chose to reserve the cord blood for your family, then siblings who have the same parents have a 25% chance of being an exact match.
http://sportifynews.com/news/cord-blood-banking-stem-cell-research-pros-amp-cons-review-launched/0084102/
http://www.wmcactionnews5.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

http://www.hawaiinewsnow.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

http://www.wandtv.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

http://www.nbc12.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

https://www.youtube.com/channel/UCspc5xs7rmywaELYKBqCOAg
Tissue typed and listed on the registry of the C.W. Bill Young Cell Transplantation Program, also called the Be The Match Registry®. (The registry is a listing of potential marrow donors and donated cord blood units. When a patient needs a transplant, the registry is searched to find a matching marrow donor or cord blood unit.)
Private (commercial) cord banks will store the donated blood for use by the donor and family members only. They can be expensive. These banks charge a fee for processing and an annual fee for storage.
This Privacy Policy and Terms of Use sets out how Americord Registry uses and protects any information that you give Americord Registry when you use this website. SequenceDNA TOS provides the current terms of service for those clients that are using Americord’s SequenceDNA Services.
With allogeneic transplants, GVHD sometimes develops when white blood cells from the donor (the graft) identify cells in the patient’s body (the host) as foreign and attack them. The most commonly damaged organs are the skin, liver, and intestines. This complication can develop within a few weeks of the transplant (acute GVHD) or much later (chronic GVHD). To prevent this complication, the patient may receive medications that suppress the immune system. Additionally, the donated stem cells can be treated to remove the white blood cells that cause GVHD in a process called “T-cell depletion.” If GVHD develops, it can be very serious and is treated with steroids or other immunosuppressive agents. GVHD can be difficult to treat, but some studies suggest that patients with leukemia who develop GVHD are less likely to have the cancer come back. Clinical trials are being conducted to find ways to prevent and treat GVHD.
There are a number of different processing methods out there for a cord blood bank to use, and the processing method can ultimately affect the purity of the final product, which we’ll explain in a minute. Once the stem and immune system cells have been isolated and extracted from the plasma and red blood cell, they are mixed with a cryo-protectant and stored in a cryo-bag. We overwrap our bags for added protection and use a technique called “controlled-rate freezing” to prepare the cells for long-term storage. The overwrapped cryo-bag is housed in a protective metal cassette and placed in vapor-phase liquid nitrogen freezer for long-term preservation.
Most of the diseases on the proven treatment list are inherited genetic diseases. Typically, a child with a genetic disease would require cord blood unit from a sibling or an unrelated donor. Having a sibling cord blood unit can be a great advantage as research shows that treatments using cord blood from a family member are about twice as successful as treatments using cord blood from a non-relative.9a, 17
The next step at either a public or family bank is to process the cord blood to separate the blood component holding stem cells. The final product has a volume of 25 milliliters and includes a cryoprotectant which prevents the cells from bursting when frozen. Typical cost, $250 to $300 per unit.
Bone marrow and similar sources often requires an invasive, surgical procedure and one’s own stem cells may already have become diseased, which means the patient will have to find matching stem cells from another family member or unrelated donor. This will increase the risk of GvHD. In addition, finding an unrelated matched donor can be difficult, and once a match is ascertained, it may take valuable weeks, even months, to retrieve. Learn more about why cord blood is preferred to the next best source, bone marrow.
Luckily for expectant parents, cord blood can be easily collected at the baby’s birth via the umbilical cord with no harm to the mother or baby. This is why pregnancy is a great time to plan to collect and bank a baby’s cord blood.
It depends on who you ask. Although commercial cord blood banks often bill their services as “biological insurance” against future diseases, the blood doesn’t often get used. One study says the chance that a child will use their cord blood over their lifetime is between 1 in 400 and 1 in 200,000.
There are some diseases on the list (like neuroblastoma cancer) where a child could use his or her own cord blood. However, most of the diseases on the proven treatment list are inherited genetic diseases. Typically, a child with a genetic disease would require a cord blood unit from a sibling or an unrelated donor. 
Our annual storage fee is due every year on the birth date of the child and covers the cost of storage until the following birthday. The fee is the same $150 for both our standard and our premium cord blood services. The annual cord tissue storage fee is an additional $150.
Cord blood holds promise for future medical procedures. Scientists are still studying more ways to treat more diseases with cord blood. At Duke University, for example, researchers are using patients’ own cord blood in trials for cerebral palsy and Hypoxic ischemic encephalopathy (a condition in which the brain does not receive enough oxygen). Trials are also under way for the treatment of autism at the Sutter Neuroscience Institute in Sacramento, California.
Generally not. The reason siblings are more likely to match is because they get half of their HLA markers from each parent. Based on the way parents pass on genes, there is a 25 percent chance that two siblings will be a whole match, a 50 percent chance they will be a half match, and a 25 percent chance that they will not be a match at all. It is very rare for a parent to be a match with their own child, and even more rare for a grandparent to be a match.
Anthony’s doctors found a match for him through the New York Blood Center’s National Cord Blood Program, a public cord blood bank. Unlike private banks, public banks do not charge to collect cord blood, they charge a patients insurance company when cells are used. And once it is entered in the public system, the blood is available to anyone who needs it.
Today, many conditions may be treatable with cord blood as part of a stem cell transplant, including various cancers and blood, immune, and metabolic disorders. Preserving these cells now may provide your family potential treatment options in the future.
The Medical Letter On Drugs and Therapeutics also recently addressed aspects of public and private cord blood banks, asking the question: “Does Private Banking Make Sense?” After citing various statistics on the actual uses of privately stored cord blood, they concluded that: “At the present time, private storage of umbilical cord blood is unlikely to be worthwhile. Parents should be encouraged to contribute, when they can, to public cord blood banks instead.” [Access The Medical Letter at www.medicalletter.org].
Cord blood cannot be used if the donor (baby) contains the same genetic illness as the recipient. Most cord blood banks glaze over this, but it is important to understand that the odds of using cord blood for the same child are much lower than the odds of using them for a sibling.
Pro:  It gives you that peace of mind that if anything did happen to your child, the doctors would have access to their blood.  This could potentially be a great benefit, and you would have no idea what would have happened if it weren’t for this blood.
We believe that every family should have the opportunity to preserve their baby’s newborn stem cells. That’s why CBR offers transparent costs of cord blood banking, and various payment options to fit this important step into almost every family budget.
Just like other blood donations, there is no cost to the donor of cord blood. If you do not choose to store your baby’s blood, please consider donating it. Your donation could make a difference in someone else’s life.
The Leading the Way LifeSaving Ambassadors Club is a recognition program honoring sponsor groups for outstanding performance in reaching or exceeding blood drive collections goals.  CBC presents a Leading the Way plaque to winning sponsors on an annual basis. The award is based on three levels of achievement:

Leave a Reply

Your email address will not be published. Required fields are marked *